Aerial Land Inspection System

Vermeer

May 1617
Brian Gillenwater
Nathan Kent
Quinn Murphy
Bryce Poellet
Jonathan Schlueter

Introduction
Project Plan
System Design
Conclusion

Problem Statement

- Decline of skilled operators for agricultural equipment
- Increased interest in remote controlled machinery
- View the environment prior to arrival
- Automate the capture process

Project Deliverables

- Map the terrain of a future work site
- Generate a quadcopter flight path based on user input
- Autonomously fly the quadcopter and capture images
- Create a 3D model from the images
- View the model through a head-mounted display

Introduction
Project Plan
System Design
Conclusion

Functional Requirements

- Sustained flight in adverse weather
- At least 20 minutes of flight time
- Fly up to ½ mile away from controller
- Take 70 or more images with more than 50% overlap
- Model generated in less than 6 hours
- Model is viewable in a virtual reality platform

Non-Functional Requirements

- Scale altitude and image count based on survey area
- Generate sharp, accurate model
- Terrain agnostic
- System contains safety measures

Design Considerations

- FAA limitations on unmanned aircraft systems
- Limited quadcopter flight range and battery life
- Different quadcopter may be used for mapping in the future
- Photo taking pattern affects final model
- Rendering 3D models requires significant time

Market Research - Quadcopters

- Lumenier QVA250 Kit with OpenPilot
- Parrot Bebop
- DJI Matrice 100
- DJI Phantom 3 Advanced

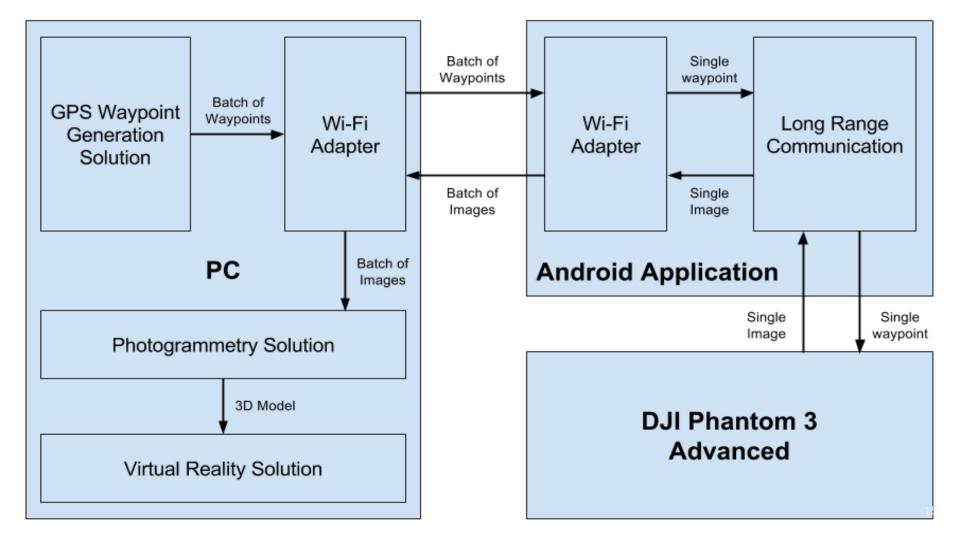
Market Research – Photogrammetry Software

- Pix4D
- Ames Stereo Pipeline (NASA)
- VisualSFM + CMP-MVS
- RealityCapture

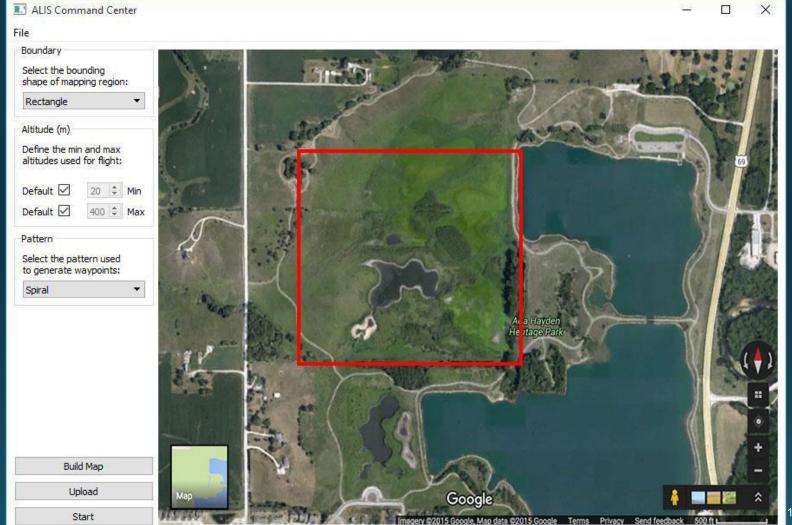
Cost

- Powerful Windows PC Already Available
- DJI Phantom 3 Advanced \$1000
- Android 4.1 (or later) Device \$100
- Oculus Rift DK2 \$350

Risks


- FAA regulations on quadcopters are undergoing changes
 - Will need to keep aware of regulations in order to comply to them
- Difficulties loading the 3D model into a Game Engine for viewing
 - Having issues with file sizes and formats
- Unknown how the photogrammetry will work with snow
 - May make testing difficult in the upcoming months

Schedule


September	Plan the high-level project and conduct market research
October	Purchase components Plan the Windows and Android applications
November	Begin work on Windows and Android applications Testing of photogrammetry software
December / January	Working prototypes of Windows and Android applications
February	Working prototype of communication between subsystems 3D Model Generation from captured images
March	Completed system - Windows and Android applications done Photogrammetry pipeline integrated into system
April	Bug fixes

Introduction Project Plan System Design Conclusion

ALIS Command Center

- Built with Qt framework
- User selects area from Google maps
- Automatic route generation
- Wireless communication to Android device
- Controls photogrammetry pipeline
- Imports 3D model into game engine

ALIS LITE

- Android Thin Client
- Translates instructions from the PC application to the quadcopter
- Transfers the images taken back to the PC
- See the state of the quadcopter, map the coordinates, and force it to land
- Uses DJI Mobile SDK for quadcopter control

ALIS Image Generation Pattern

Photogrammetry

- Process of transforming 2D pictures into a 3D model
- Photogrammetry process
 - 1. Feature Detection
 - 2. Pairwise Matching
 - 3. Sparse Reconstruction
 - 4. Dense Reconstruction
 - 5. Texture Application
 - 6. Model Output

Testing

- Windows
 - Generates correct waypoints and flight plan
 - UI usability testing
- Android
 - Needs a quadcopter to run, hard to automate tests, most will be manual.
 - Can use DJI Phantom Simulator
 - As it is a thin client, no algorithms need to be tested
- Photogrammetry
 - Manual testing
 - Model size and resolution

Introduction
Project Plan
System Design
Conclusion

Project Status

Windows

• Majority of the UI and Google Maps integration is complete. Waypoint generation and transfer protocol currently under development.

Android

 Nearing completed prototype. Can currently send locations to the app, the app can communicate with the quadcopter.

Photogrammetry

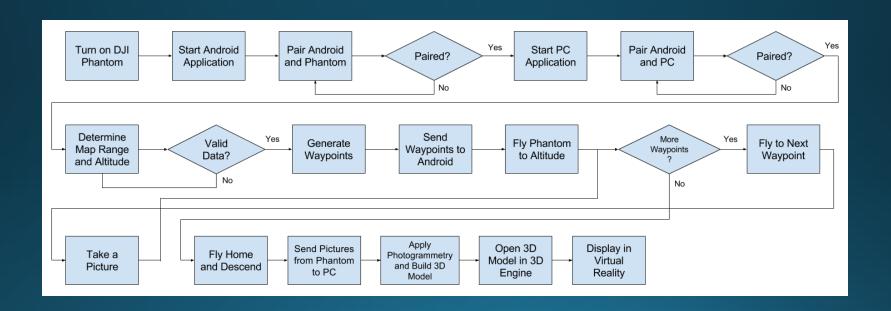
- Successfully generated 3D model
- Currently narrowing input parameters for optimal model

Future Plans

- Windows
 - Establish connections to Android device
 - Flight plan generation
 - Automate model generation
- Android
 - Add more safety checks
 - Establish connection to Windows application
- Photogrammetry
 - Decide between RealityCapture and VisualSFM+CMP-MVS
 - Determine ideal output format
 - Integrate into Windows application

Individual Contributions

- Brian Gillenwater
 - Website, Windows Application
- Nathan Kent
 - Photogrammetry Pipeline
- Quinn Murphy
 - ALIS LITE (Android)
- Bryce Poellet
 - Networking, Windows Application
- Jon Schlueter
 - Windows Application Lead, VR/Game Engine Integration



Questions

ALIS LITE State Diagram

